Small (2,s)-colorable graphs without 1-obstacle representations
نویسندگان
چکیده
An obstacle representation of a graph G is a set of points on the plane together with a set of polygonal obstacles that determine a visibility graph isomorphic to G. The obstacle number of G is the minimum number of obstacles over all obstacle representations of G. Alpert, Koch, and Laison [1] gave a 12-vertex bipartite graph and proved that its obstacle number is two. We show that a 10-vertex induced subgraph of this graph has obstacle number two. Alpert et al. [1] also constructed very large graphs with vertex set consisting of a clique and an independent set in order to show that obstacle number is an unbounded parameter. We specify a 70-vertex graph with vertex set consisting of a clique and an independent set, and prove that it has obstacle number greater than one. This is an ancillary document to our article in press [8]. We conclude by showing that a 10-vertex graph with vertex set consisting of two cliques has obstacle number greater than one, improving on a result therein.
منابع مشابه
On S-packing edge-colorings of cubic graphs
Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an Spacking edge-coloring of a graph G is a partition of the edge set of G into k subsets {X1,X2, . . . ,Xk} such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e′ ∈ Xi is at least si + 1. This paper studies S-packing edgecolorings of cubic graphs. Among other results, we prove that cubic graphs ...
متن کاملOn Minimal Non-(2,1)-Colorable Graphs
A graph is (2, 1)-colorable if it allows a partition of its vertices into two classes such that both induce graphs with maximum degree at most one. A non-(2, 1)-colorable graph is minimal if all proper subgraphs are (2, 1)colorable. We prove that such graphs are 2-edge-connected and that every edge sits in an odd cycle. Furthermore, we show properties of edge cuts and particular graphs which ar...
متن کاملA Linear Lower Bound on the Query Complexity of Property Testing Algorithms for 3-Coloring in Bounded-degree Graphs
We consider the problem of testing 3-colorability in the bounded-degree model. A 3-colorability tester is an algorithm A that is given oracle access to the adjacency list representation of a graph G of maximum degree d with n vertices; A is required to, say, accept with probability at least 2/3 if G is 3-colorable, and to accept with probability at most 1/3 if G is -far from 3-colorable (meanin...
متن کاملKr-Free Uniquely Vertex Colorable Graphs with Minimum Possible Edges
There is a conjecture due to Shaoji 3], about uniquely vertex r-colorable graphs which states: \ If G is a uniquely vertex r-colorable graph with order n and size (r ? 1)n ? ? r 2 , then G contains a K r as its subgraph." In this paper for any natural number r we construct a K r-free, uniquely r-colorable graph with (r ? 1)n ? ? r 2 edges. These families of graphs are indeed counter examples to...
متن کاملPlanar graphs with girth at least 5 are (3, 5)-colorable
A graph is (d1, . . . , dr )-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr where themaximum degree of the graph induced by Vi is at most di for each i ∈ {1, . . . , r}. Let Gg denote the class of planar graphs with minimum cycle length at least g . We focus on graphs in G5 since for any d1 and d2, Montassier and Ochem constructed graphs in G4 that are not (d1, d2)-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1012.5907 شماره
صفحات -
تاریخ انتشار 2010