Small (2,s)-colorable graphs without 1-obstacle representations

نویسندگان

  • János Pach
  • Deniz Sariöz
چکیده

An obstacle representation of a graph G is a set of points on the plane together with a set of polygonal obstacles that determine a visibility graph isomorphic to G. The obstacle number of G is the minimum number of obstacles over all obstacle representations of G. Alpert, Koch, and Laison [1] gave a 12-vertex bipartite graph and proved that its obstacle number is two. We show that a 10-vertex induced subgraph of this graph has obstacle number two. Alpert et al. [1] also constructed very large graphs with vertex set consisting of a clique and an independent set in order to show that obstacle number is an unbounded parameter. We specify a 70-vertex graph with vertex set consisting of a clique and an independent set, and prove that it has obstacle number greater than one. This is an ancillary document to our article in press [8]. We conclude by showing that a 10-vertex graph with vertex set consisting of two cliques has obstacle number greater than one, improving on a result therein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On S-packing edge-colorings of cubic graphs

Given a non-decreasing sequence S = (s1, s2, . . . , sk) of positive integers, an Spacking edge-coloring of a graph G is a partition of the edge set of G into k subsets {X1,X2, . . . ,Xk} such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e′ ∈ Xi is at least si + 1. This paper studies S-packing edgecolorings of cubic graphs. Among other results, we prove that cubic graphs ...

متن کامل

On Minimal Non-(2,1)-Colorable Graphs

A graph is (2, 1)-colorable if it allows a partition of its vertices into two classes such that both induce graphs with maximum degree at most one. A non-(2, 1)-colorable graph is minimal if all proper subgraphs are (2, 1)colorable. We prove that such graphs are 2-edge-connected and that every edge sits in an odd cycle. Furthermore, we show properties of edge cuts and particular graphs which ar...

متن کامل

A Linear Lower Bound on the Query Complexity of Property Testing Algorithms for 3-Coloring in Bounded-degree Graphs

We consider the problem of testing 3-colorability in the bounded-degree model. A 3-colorability tester is an algorithm A that is given oracle access to the adjacency list representation of a graph G of maximum degree d with n vertices; A is required to, say, accept with probability at least 2/3 if G is 3-colorable, and to accept with probability at most 1/3 if G is -far from 3-colorable (meanin...

متن کامل

Kr-Free Uniquely Vertex Colorable Graphs with Minimum Possible Edges

There is a conjecture due to Shaoji 3], about uniquely vertex r-colorable graphs which states: \ If G is a uniquely vertex r-colorable graph with order n and size (r ? 1)n ? ? r 2 , then G contains a K r as its subgraph." In this paper for any natural number r we construct a K r-free, uniquely r-colorable graph with (r ? 1)n ? ? r 2 edges. These families of graphs are indeed counter examples to...

متن کامل

Planar graphs with girth at least 5 are (3, 5)-colorable

A graph is (d1, . . . , dr )-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr where themaximum degree of the graph induced by Vi is at most di for each i ∈ {1, . . . , r}. Let Gg denote the class of planar graphs with minimum cycle length at least g . We focus on graphs in G5 since for any d1 and d2, Montassier and Ochem constructed graphs in G4 that are not (d1, d2)-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1012.5907  شماره 

صفحات  -

تاریخ انتشار 2010